Week 8 - Pair of lines

(1)Find the angle between the pair of lines and separate them:
(i) $12 x^{2}+7 x y-12 y^{2}=0$
(ii) $x^{2}+4 x y+y^{2}=0$
(iii) $\mathrm{x}^{2}-4 \mathrm{y}^{2}=0$
(iv) $x^{2}+2 x y+y^{2}=0$
(v) $2 \mathrm{x}^{2}-7 \mathrm{xy}+3 \mathrm{y}^{2}=0$
(vi) $x^{2}+2 x y+8 y^{2}=0$
(vii) $x^{2}-2 x y-3 y^{2}=0$
(viii) $2 x^{2}+5 x y-3 y^{2}=0$
(ix) $x^{2}-x y+3 y^{2}=0$
(2)Show that the equation represents pair of lines and find their point of intersection:
(i) $3 x^{2}+5 x y-12 y^{2}-19 x+34 y-14=0$
(ii) $x^{2}+4 x y+4 y^{2}+3 x+6 y+2=0$
(iii) $6 x^{2}+x y-12 y^{2}-14 x+47 y-40=0$
(iv) $6 x^{2}+x y-y^{2}+4 x-8 y-16=0$
(v) $6 x^{2}+2 x y-20 y^{2}-9 x-7 y+3=0$
(vi) $8 x^{2}+12 x y-8 y^{2}-10 x+10 y-3=0$
(vii) $2 x^{2}+3 x y+y^{2}-x-1=0$
(viii) $2 x^{2}+x y-y^{2}-3 x+3 y-2=0$
(ix) $2 x^{2}-x y-y^{2}-4 x-5 y-6=0$
(x) $x^{2}-2 x y-3 y^{2}-2 x+6 y=0$
(3)Find the value of the constant such that the equation represents pair of lines:
(i) $x^{2}-3 x y+2 y^{2}+x-y+k=0$
(ii) $2 x^{2}+3 x y+b y^{2}-x-1=0$
(4)Show that the following pair of lines form a square and find its area:

$$
12 x^{2}+7 x y-12 y^{2}=0, \quad 12 x^{2}+7 x y-12 y^{2}-x+7 y-1=0
$$

Week 9 - Circle and Parabola

(1)Write the equation of the circle in Cartesian form and parametric form where:
(i)the center is $(2,3)$ and radius is $3 \quad$ (ii)the center is $(-2,1)$ and the radius is 2
(iii)the center is $(3,-2)$ and radius is 4 (iv)the center is $(0,2)$ and the radius is 5
(2)Find the equation of the circle in which the following points are ends of diameter:
(i) $(1,0),(3,4)$
(ii) $(0,0),(-2,2)$
(iii) $(4,1),(2,3)$
(3)Write the equation of the tangent to each of the following circles at the given point:
(i) $x^{2}+y^{2}+8 x-4 y-41=0 \quad$ at $(2,7)$
(ii) $\mathrm{x}^{2}+\mathrm{y}^{2}-4=0$
at $(2,0)$
(iii) $x^{2}+y^{2}-3 x+4 y-31=0$ at $(-2,3)$
(iv) $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}+3=0$ at $(2,3)$
(4)Find the radical axis and the points of intersection of each pair of the circles:
(i) $x^{2}+y^{2}+3 x-2 y-4=0, \quad x^{2}+y^{2}-2 x-y-6=0$
(ii) $x^{2}+y^{2}-3 x+4 y-31=0, x^{2}+y^{2}-2 x-4 y+3=0$
(iii) $x^{2}+y^{2}+6 x-2 y-1=0, \quad x^{2}+y^{2}+2 x-y-8=0$
(iv) $x^{2}+y^{2}-4 x+2 y-3=0, \quad x^{2}+y^{2}-6 x-8 y+3=0$
(5)Show that the two circles are orthogonal in the following:
(i) $x^{2}+y^{2}+6 x+2=0, \quad x^{2}+y^{2}+y-2=0$
(ii) $x^{2}+y^{2}+6 x-2 y+1=0, x^{2}+y^{2}-2 x-6 y-1=0$
(6)Determine the vertex, focus and the directrix of the following parabolas:
(i) $y^{2}=-8 x$
(ii) $y^{2}-8 x+2 y+1=0$
(iii) $x^{2}=-12 y$
(iv) $x^{2}-8 x+8 y-8=0$
(v) $y^{2}-8 x+16=0$
(vi) $x^{2}=-8 y+24$
(vii) $y^{2}+3 x+4 y+13=0$
(viii) $\mathrm{x}^{2}-2 \mathrm{x}-8 \mathrm{y}-17=0$
(ix) $y^{2}+8 x-4 y-20=0$
(x) $y^{2}+4 x+6 y+1=0$
(xi) $x^{2}+4 x+8 y-28=0$
(xii) $x^{2}+6 x+4 y+9=0$
(7)Write the equation of the parabola in the following:
(i)Focus at the point $(2,0)$ and directrix is $x+2=0$
(ii)Focus at the point $(4,0)$ and directrix is $x=0$
(iii)Focus at the point $(-2,0)$ and directrix is $x-4=0$
(iv)Focus at the point $(0,3)$ and directrix is $y+4=0$
(v)Focus at the point $(3,-6)$ and directrix is $y-8=0$
(vi)Focus at the point $(2,4)$ and directrix is $x-10=0$
(8)Write the equation of the parabola in the following:
(i)Focus at the point $(3,0)$ and directrix is $x-y+1=0$.
(ii)Focus at the point $(0,2)$ and directrix is $x-y-2=0$.
(iii)Focus at the point $(1,-2)$ and directrix is $x-y=0$.

Week 10 - Ellipse and Hyperbola

(1)Determine the center, vertices, foci, the major and minor axes of the ellipses:
(i) $\frac{\mathrm{x}^{2}}{144}+\frac{\mathrm{y}^{2}}{16}=1$
(ii) $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
(iii) $\frac{x^{2}}{9}+\frac{(y-3)^{2}}{16}=1$
(iv) $x^{2}+4 y^{2}+4 x-24 y+36=0$
(v) $16 x^{2}+9 y^{2}+32 x-18 y+25=0$
(vi) $x^{2}+4 y^{2}-4 x-8 y+4=0$
(vii) $x^{2}+9 y^{2}-6 x+18 y+9=0$
(viii) $x^{2}+4 y^{2}+6 x-16 y+21=0$
(ix) $4 x^{2}+5 y^{2}-24 x-30 y+61=0$
(x) $9 x^{2}+4 y^{2}-54 x+24 y+81=0$
(xi) $9 x^{2}+y^{2}-36 x+6 y+36=0$
(2)Write the equation of the ellipse in Cartesian form and parametric form where:
(i)Foci $\quad(4,0), \quad(-4,0)$ and the major axis is 10 .
(ii)Foci $\quad(4,0) \quad(-4,0)$ and the minor axis is 10 .
(iii)Foci $\quad(-10,0),(-2,0)$ and the major axis is 10 .
(iv)Foci $\quad(0,3), \quad(0,-3)$ and the major axis is 10 .
(v) Foci $\quad(6,3), \quad(6,-3)$ and the major axis is 10 .
(vi) Foci $\quad(6,3), \quad(-2,3)$ and the major axis is 12.
(vii)Vertices $(5,0), \quad(-5,0)$ and foci $(3,0),(-3,0)$
(viii)Vertices $(5,2), \quad(-5,2)$ and foci $(3,2),(-3,2)$
(3)Write each the equation of each ellipse in parametric form:
(i) $2 \mathrm{x}^{2}+3 \mathrm{y}^{2}+8 \mathrm{x}+12 \mathrm{y}+8=0$
(ii) $9 x^{2}+y^{2}-36 x+6 y+36=0$
(4)Determine the center, vertices, foci, the transverse and conjugate axes of the following hyperbolas:
(i) $\frac{\mathrm{x}^{2}}{144}-\frac{\mathrm{y}^{2}}{16}=1$
(ii) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
(iii) $\frac{\mathrm{x}^{2}}{9}-\frac{(\mathrm{y}-3)^{2}}{16}=1$
(iv) $x^{2}-4 y^{2}+4 x+24 y-36=0$
(v) $16 x^{2}-9 y^{2}+32 x+18 y+7=0$
(vi) $9 x^{2}-4 y^{2}-16 y+20=0$
(vii) $4 x^{2}-9 y^{2}-8 x+36 y+4=0$
(x) $4 x^{2}-y^{2}+16 x-4 y+16=0$
(vii) $\mathrm{x}^{2}-\mathrm{y}^{2}-2 \mathrm{x}+4=0=0$
(ix) $2 x^{2}-y^{2}-12 x+6 y-13=0$
(xi) $4 x^{2}-y^{2}+16 x-4 y-16=0$
(5)Write the equation of the hyperbola in the following:

(i)Foci	$(4,0)$,	$(-4,0)$
(ii)Foci	$(4,0)$,	$(-4,0)$ and the transverse axis is 4.
(iii)Foci	$(-10,0)$,	$(-2,0)$ and the transverse axis is 6 .
(iv)Foci	$(0,5)$,	$(0,-5)$ and the transverse axis is 8.
(v) Foci	$(6,3)$,	$(6,-3)$ and the transverse axis is 4 .
(vi) Foci	$(6,3)$,	$(-2,3)$ and the transverse axis is 4 .
(vii)Vertices $(5,0)$,	$(-5,0)$ and foci $(8,0),(-8,0)$	
(viii)Vertices $(5,2)$,	$(-5,2)$ and foci $(7,2),(-7,2)$	

(6)Determine the type of each curve in the following:
(i) $5 x^{2}-4 x y+2 y^{2}-6=0$
(ii) $2 x y+4 x-8 y-17=0$
(iii) $24 x y-7 y^{2}-120 y-144=0$
(iv) $8 x^{2}-4 x y+5 y^{2}-36 x+18 y+9=0$
(v) $16 x^{2}-24 x y+9 y^{2}-94 x+8 y-99=0$
(vi) $9 x^{2}+24 x y+16 y^{2}-3 x-4 y-6=0$
(vii) $3 x^{2}+8 x y-3 y^{2}+54 x+22 y-77=0$
(viii) $3 x^{2}-8 x y-3 y^{2}-2 x-4 y-1=0$
(ix) $x^{2}-2 x y+y^{2}-6 x-2 y+1=0$
(x) $4 x^{2}+6 x y-4 y^{2}-6 x+8 y-4=0$

Week 11 - Solid Geometry

(1)Write the equation of the plane which satisfies the conditions:
(i) passes through the points $\mathrm{A}(1,0,1), \mathrm{B}(2,1,0), \mathrm{C}(0,2,1)$.
(ii)passes through the points $\mathrm{A}(0,0,0), \mathrm{B}(1,1,0), \mathrm{C}(1,1,1)$.
(iii)passes through the point $\mathrm{A}(1,0,1)$ and its perpendicular vector $\overline{\mathrm{U}}=2 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$ (iv)passes through the point $\mathrm{A}(1,0,1)$ and parallels to the plane $2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}+2=0$ (v)passes through the point $\mathrm{A}(2,1,1)$ and perpendicular to the planes:

$$
2 x+y-3 z+2=0 \text { and } x+y+2 x=0
$$

(2)Find the symmetric form and parametric form of each line:
(i) It passes through the point $(2,0,-1)$ and parallels to the vector $\bar{U}=2 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-\overline{\mathrm{k}}$
(ii)It passes through the point $(3,0,-2)$ and parallels to the vector $\bar{U}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}$
(iii) It passes through the points $(3,0,-3)$ and $(0,3,1)$
(iv) It passes through the points $(1,2,-1)$ and $(2,3,4)$
(3)Find the angle between each pair of lines:
(i) $\frac{x-4}{4}=\frac{y-1}{0}=\frac{z}{3} \quad$ and $\quad \frac{x-1}{2}=\frac{y-1}{1}=\frac{z}{2}$
(ii) $\frac{x}{-2}=\frac{y-1}{1}=\frac{z+2}{2} \quad$ and $\quad \frac{x-2}{2}=\frac{y-1}{1}=\frac{z+3}{-2}$
(iii) $x=3 t+4, \quad y=2, \quad z=4 t-1, \quad t$ in R $x=t+2, \quad y=2 t+1, \quad z=2 t-1, \quad t$ in R
(iv) $x=2 t+1, \quad y=2 t-1, \quad z=t, \quad t$ in R

$$
x=t+2, \quad y=2 t+1, \quad z=2 t-1, \quad t \text { in } R
$$

(4)Find the angle between the two planes :
(i) $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+1=0, \quad \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=0$
(ii) $2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}+1=0, \quad \mathrm{x}-\mathrm{y}+\mathrm{z}+3=0$
(iii) $\mathrm{x}+\mathrm{y}+\mathrm{z}+2=0, \quad 2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=0$
(iv) $4 x+3 y-3=0, \quad x-2 y+2 z+5=0$
(5)Find the angle between the plane and the line, also, obtain the point of intersection of them:
(i) $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+1=0$ and $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z+1}{-2}$
(ii) $\mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=0 \quad$ and $\quad \frac{x+1}{3}=\frac{y}{4}=\frac{z-3}{0}$
(iii) $2 \mathrm{x}+3 \mathrm{y}+3 \mathrm{z}-8=0$ and $\frac{x+1}{3}=\frac{y-3}{-1}=\frac{z+3}{2}$
(iv) $\mathrm{x}-2 \mathrm{y}+2 \mathrm{z}-3=0 \quad$ and $\quad \frac{x}{3}=\frac{y-2}{1}=\frac{z-1}{1}$
(6)Show that the lines are skew :
(i) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+1}{-1} \quad$ and $\quad \frac{x+1}{3}=\frac{y-1}{2}=\frac{z-1}{1}$
(ii) $\frac{x}{1}=\frac{y-2}{2}=\frac{z-1}{2} \quad$ and $\quad \frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{2}$
(7)Write the equation of the sphere which satisfies the conditions:
(i) the center is $(1,0,1)$ and radius is 3 .
(ii) the center is $(1,2,-3)$ and radius is 4 .
(ii) The center is the point $(1,1,-2)$ and radius is $2 / 3$.
(8)Determine the center and radius of each sphere:
(1) $x^{2}+y^{2}+z^{2}-6 x-2 y+6=0$
(2) $x^{2}+y^{2}+z^{2}-4 z-1=0$
(3) $x^{2}+y^{2}+z^{2}-2 x+4 y-4 z+9=0$
(4) $x^{2}+y^{2}+z^{2}-2 x+2 y-2=0$
(5) $x^{2}+y^{2}+z^{2}-2 x-6 z+2=0$
(6) $4+6 x-5 z-2 x^{2}-2 y^{2}-2 z^{2}=0$
(9)Write the name of each in the following :
(i) $x^{2}+y^{2}+z^{2}-6 x-2 y-1=0$
(ii) $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-2 \mathrm{x}+4 \mathrm{z}-1=0$
(iii) $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-4 \mathrm{z}=0$
(iv) $\mathrm{X}^{2}+4 \mathrm{z}^{2}-2=0$
(v) $2 y^{2}+z^{2}-x^{2}=0$
(vi) $\mathrm{X}^{2}+\mathrm{z}^{2}-3=0$
(vii) $x^{2}+z^{2}-4 y^{2}=0$
(viii) $x^{2}+3 y^{2}=5$
(ix) $x^{2}+y^{2}+z^{2}-2=0$
(x) $x^{2}+y^{2}-3 z^{2}=0$
(xi) $x^{2}-y^{2}+z^{2}=0$
(xi) $x^{2}+y^{2}-2 z^{2}=0$

Name	Equation
Straight Line	$\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, horizontal when $\mathrm{a}=0$, vertical when $\mathrm{b}=0$
Pair of Lines	- $\mathrm{ax}^{2}+2 h x y+\mathrm{by}^{2}=0$, passes through $(0,0), \tan \theta= \pm 2 \frac{\sqrt{h^{2}-\mathrm{ab}}}{a+b}$ - $a_{x}^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \quad$ if $\left\|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right\|=0$
Circle	$x^{2}+y^{2}+2 g x+2 f y+c=0 \quad \text { Or }\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=a^{2}$ Center is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, radius is a
Parabola	Horizontal $\left(y-y_{1}\right)^{2}=4 a\left(x-x_{1}\right)$, vertex is $\left(x_{1}, y_{1}\right)$, focus is $\left(x_{1}+a, y_{1}\right)$ Vertical $\left(x-x_{1}\right)^{2}=4 a\left(y-y_{1}\right)$, vertex is $\left(x_{1}, y_{1}\right)$, focus is $\left(x_{1}, y_{1}+a\right)$
Ellipse	$\frac{\left(x-x_{1}\right)^{2}}{a^{2}}+\frac{\left(y-y_{1}\right)^{2}}{b^{2}}=1$, center is $\left(x_{1}, y_{1}\right)$ Horizontal when $a>b, a^{2}=b^{2}+c^{2}$ Vertices are $\mathrm{V}_{1}\left(\mathrm{x}_{1}+\mathrm{a}, \mathrm{y}_{1}\right), \mathrm{V}_{2}\left(\mathrm{x}_{1}-\mathrm{a}, \mathrm{y}_{1}\right)$ Foci are $\mathrm{F}_{1}\left(\mathrm{x}_{1}+\mathrm{c}, \mathrm{y}_{1}\right), \mathrm{F}_{2}\left(\mathrm{x}_{1}-\mathrm{c}, \mathrm{y}_{1}\right)$ Ends of minor axis are $\mathrm{M}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}+\mathrm{b}\right), \mathrm{M}_{2}\left(\mathrm{x}_{1}, \mathrm{y}_{1}-\mathrm{b}\right)$ Vertical when $a<b, b^{2}=a^{2}+c^{2}$ Vertices are $\mathrm{V}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}+\mathrm{b}\right), \mathrm{V}_{2}\left(\mathrm{x}_{1}, \mathrm{y}_{1}-\mathrm{b}\right)$ Foci are $F_{1}\left(x_{1}, y_{1}+c\right), F_{2}\left(x_{1}, y_{1}-c\right)$ Ends of minor axis are $\mathrm{M}_{1}\left(\mathrm{x}_{1}+\mathrm{a}, \mathrm{y}_{1}\right), \mathrm{M}_{2}\left(\mathrm{x}_{1}-\mathrm{a}, \mathrm{y}_{1}\right)$
Hyperbola	Horizontal $\frac{\left(x-x_{1}\right)^{2}}{a^{2}}-\frac{\left(y-y_{1}\right)^{2}}{b^{2}}=1$, center is $\left(x_{1}, y_{1}\right), c^{2}=a^{2}+b^{2}$ Vertices are $\mathrm{V}_{1}\left(\mathrm{x}_{1}+\mathrm{a}, \mathrm{y}_{1}\right), \mathrm{V}_{2}\left(\mathrm{x}_{1}-\mathrm{a}, \mathrm{y}_{1}\right)$ Foci are $F_{1}\left(x_{1}+c, y_{1}\right), F_{2}\left(x_{1}-c, y_{1}\right)$ Ends of conjugate axis are $\mathrm{M}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}+\mathrm{b}\right), \mathrm{M}_{2}\left(\mathrm{x}_{1}, \mathrm{y}_{1}-\mathrm{b}\right)$ Vertical $\frac{\left(y-y_{1}\right)^{2}}{b^{2}}-\frac{\left(x-x_{1}\right)^{2}}{a^{2}}=1$, center is $\left(x_{1}, y_{1}\right), c^{2}=a^{2}+b^{2}$ Vertices are $\mathrm{V}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}+\mathrm{b}\right), \mathrm{V}_{2}\left(\mathrm{x}_{1}, \mathrm{y}_{1}-\mathrm{b}\right)$ Foci are $\mathrm{F}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}+\mathrm{c}\right), \mathrm{F}_{2}\left(\mathrm{x}_{1}, \mathrm{y}_{1}-\mathrm{c}\right)$ Ends of conjugate axis are $\mathrm{M}_{1}\left(\mathrm{x}_{1}+\mathrm{a}, \mathrm{y}_{1}\right), \mathrm{M}_{2}\left(\mathrm{x}_{1}-\mathrm{a}, \mathrm{y}_{1}\right)$

General Equation	$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ This equation represents: (1) Pair of lines if $\Delta=\left\|\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right\|=0$ (2) If $\Delta \neq 0$ 2-1 Circle if $h=0, a=b$ 2-2 Parabola if $h^{2}=a b$ 2-3 Ellipse if $h^{2}<a b$ 2-4 Hyperbola if $h^{2}>a b$
Plane	$\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$, normal vector is $\overline{\mathrm{N}}=\mathrm{a} \overline{\mathrm{i}}+\mathrm{b} \overline{\mathrm{j}}+\mathrm{c} \overline{\mathrm{k}}$
Line in Space	$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$, passes through $\left(x_{1}, y_{1}, z_{1}\right)$ and $/ / \bar{N}=a \bar{i}+b \bar{j}+c \bar{k}$
Sphere	$x^{2}+y^{2}+z^{2}+c_{1} x+c_{2} y+c_{3} z+c_{4}=0$ Or $\quad\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}=a^{2}$, center is $\left(x_{1}, y_{1}, z_{1}\right)$, radius is a
Ellipsoid	$\begin{aligned} & c_{1} x^{2}+c_{2} y^{2}+c_{3} z^{2}+c_{4} x+c_{5} y+c_{6} z+c_{7}=0 \\ & \text { Or } \quad \frac{\left(x-x_{1}\right)^{2}}{a^{2}}+\frac{\left(y-y_{1}\right)^{2}}{b^{2}}+\frac{\left(z-z_{1}\right)^{2}}{c^{2}}=1 \end{aligned}$ Center is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$, axes are $\mathrm{a}, \mathrm{b}, \mathrm{c}$
Cone	$\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=a\left(z-z_{1}\right)^{2}$, vertex is $\left(x_{1}, y_{1}, z_{1}\right)$, axis is $/ / \mathrm{z}$ - axis $\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{z}-\mathrm{z}_{1}\right)^{2}=\mathrm{a}\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}$, vertex is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$, axis is // y -axis $\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}=a\left(x-z_{1}\right)^{2}$, vertex is $\left(x_{1}, y_{1}, z_{1}\right)$, axis is // $x-$ axis
Paraboloid	$\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}=\mathrm{a}\left(\mathrm{z}-\mathrm{z}_{1}\right)$, vertex is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$, axis is $/ / \mathrm{z}$ - axis $\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{z}-\mathrm{z}_{1}\right)^{2}=\mathrm{a}\left(\mathrm{y}-\mathrm{y}_{1}\right)$, vertex is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$, axis is $/ / \mathrm{y}-$ axis $\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}=a\left(z-z_{1}\right)$, vertex is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$, axis is $/ / \mathrm{x}$ - axis
Cylinder	$\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=a^{2}$, axis is $/ / \mathrm{z}$ - axis, passes through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, 0\right)$ $\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{z}-\mathrm{z}_{1}\right)^{2}=\mathrm{a}^{2}$, axis is $/ / \mathrm{y}-$ axis, passes through $\left(\mathrm{x}_{1}, 0, \mathrm{z}_{1}\right)$ $\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}-\mathrm{z}_{1}\right)^{2}=\mathrm{a}^{2}$, axis is $/ / \mathrm{x}$ - axis, passes through $\left(0, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$

| Engineering Mathematics |
| :--- | :--- |
| and Physics Department |
| Mathematics 2 \quad Code: Math 102 |
| Time Allowed: 2 hours |

Academic year: 2010/2011
Semester: Spring
Final Exam: June 2011
Examiner: Dr. Mona Samir Dr. Mohamed Eid

Answer 5 questions only

Examiner: Dr. Mona Samir	Dr. Mohamed Eid

Question 1

(a)Using mathematical induction to prove the validity of the following:

$$
\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\cdots+\frac{1}{(n+1) \cdot(n+2)}=\frac{n}{2 .(n+2)} .
$$

(b) Use De Moiver's theorem to evaluate: $(2-3 i)^{\frac{3}{4}}$.

Question 2

(a) Find the sum $\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)}$
(b) Solve the following linear system by inverse method:

$$
x-y+2 z=6,2 x+y-z=5, x+y-z=2 .
$$

Question 3

(a)Using the binomial theorem, expand $(5-3 x)^{\frac{5}{3}}$.
(b)Find the eigenvalues and the eigenvectors of the matrix $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}\right]$.
(c)If $\alpha, \beta, \gamma, \delta$ are the roots of the equation: $x^{4}-15 x^{2}-10 x+24=0$, then find
(i) $\sum_{i} \mathrm{C}_{\mathrm{i}}{ }^{2}$
(ii) $\sum_{i, j} \mathrm{C}_{\mathrm{i}}{ }^{2} \mathrm{C}_{\mathrm{j}}$

Question 4

(a)Complete the statement: The ellipse is locus of moving point such that....
(b)Write the equation of parabola with focus $\mathrm{F}(0,4)$ and direcrtix $\mathrm{y}=0$.
(c)Separate the lines $2 x^{2}+3 x y-2 y^{2}-x+3 y-1=0$.

Question 5

(a)Write the equation of circle where $(3,-2),(1,2)$ are ends of its diameter.
(b)Write the equation of plane passing through the point $(2,-1,1)$ and parallels to

$$
2 x-y+z=0
$$

(c)Find center, vertices and sketch the ellipse $9 x^{2}+4 y^{2}-24 y=0$.

Question 6

(a)Sketch the surfaces:
(i) $x^{2}+y^{2}+z^{2}-2 y=0$
(ii) $\mathrm{x}^{2}+(\mathrm{y}-1)^{2}-\mathrm{z}^{2}=0$
(b)Find center, vertices and sketch the hyperbola $x^{2}-y^{2}+4 x+2 y-1=0$

Eng. Mathematics and Physics Department
Mathematics 2-Code: Math 102
Final Exam: $31 / 7 / 2011$
Time Allowed: 2 hours
Answer 5 questions only

Faculty of Engineering
Academic year: 2010/2011
Semester: Summer
Examiner: Dr. Mona Samir
Dr. Mohamed Eid

Question 1

(a)Using mathematical induction to prove the validity of the following:

$$
\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\cdots+\frac{1}{(n+1) \cdot(n+2)}=\frac{n}{2(n+2)} .
$$

(b)Find the eigenvalues and the eigenvectors of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$.

Question 2

(a)Solve the following linear system by inverse method:

$$
x+y+z=5, \quad 2 x-y+z=2, \quad 2 x+2 y-z=4
$$

(b) Using the binomial theorem, expand $\sqrt{5-2 x^{3}}$.

Question 3

(a) Use De Moiver's theorem to evaluate $(4-8 i)^{\frac{5}{2}}$.
(b) Find the sum to n terms of the series: $\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)}$
(c)Solve the equation $x^{3}-12 x+16=0$ if the number 2 is a repeated root.

Question 4

(a)Complete the statement: The parabola is locus of moving point such that....
(b)Write the equation of parabola with focus $F(5,0)$ and direcrtix $x=1$.
(c)Separate the lines $2 x^{2}+3 x y-2 y^{2}-x+3 y-1=0$.

Question 5

(a)Determine the center and radius of the circle $x^{2}+y^{2}-6 x+8 y=0$.
(b)Write the equation of plane passing through the points: $(2,-1,1),(1,2,1),(0,3,3)$.
(c)Find center, vertices and sketch the hyperbola $y^{2}-x^{2}+4 x=0$.

Question 6

(a)Sketch the surfaces:
(i) $y^{2}-x^{2}-z^{2}=0$
(ii) $x^{2}+y^{2}+z^{2}-4 y-5=0$
(b)Find center, vertices and sketch the ellipse $9 x^{2}+4 y^{2}-36 x=0$

Basic Science Department Mathematics 2 \quad Code: Math 102 Final Exam: $17-1-2013$ Time Allowed: 2 hours		Academic year: 2012 / 2013 Semester: \quad Autumn Examiner: Dr. Mohamed Eid
Answer All questions		Total Marks 40

Question 1

(a) If $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 1 & 1 \\ 0 & 4\end{array}\right]$

Find, if possible, $A+B, A . B^{t}, A+B^{t}, A . B,|A . B|$
(b) Find the eigenvalues and the eigenvectors of the matrix $A=\left[\begin{array}{ll}0 & 3 \\ 1 & 2\end{array}\right]$.
(c) Determine the type of solution of the linear system:

$$
x+y+z=5, x-y+z=2,2 x+2 z=7
$$

Question 2

(a) Using the binomial theorem, expand $\frac{1}{\sqrt{1-2 x}}$
(b) Using mathematical induction, prove that:

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{(n+1)}
$$

(c) If $z_{1}=2-3 i, z_{2}=-1+2 i$. Find $z_{1} \cdot z_{2},\left(z_{1}+z_{2}\right)^{10}$.

Question 3

(a)State the definition of parabola.
(b)Separate the lines $x^{2}+x y-2 y^{2}+3 x+6 y=0$.

Also, find the angle between them.
(c) Write the equation of circle with center $(2,-3)$ and radius $3 / 2$.
(d)Determine the vertex, focus and sketch the parabola $x^{2}-4 x+8 y-4=0$.

Question 4

(a)Find center, vertices and sketch the ellipse $x^{2}+4 y^{2}+4 x+8 y+4=0$.
(b)Describe the surface $x^{2}+y^{2}+z^{2}-2 x+4 y=0$
(c)Write the equation of plane that passes through $(1,2,3),(2,1,1),(3,0,2)$.

Basic Science Department		Academic year: 2012/2013
Math. 2 Code: Math 102		Semester: Spring
Final Exam: $26-5-2013$		Examiner: Dr. Mona Samir
Time Allowed: 2 hours		Dr. Mohamed Eid
Answer All questions		Total Mark: 40

Question 1

(a) If α, β and γ are the roots of the equation: $x^{3}-6 x-3 x^{2}+8=0$,
Find: (i) $\sum_{i=1}^{3} C_{i}^{2}$
(ii) $\sum_{i=1}^{3} C_{i}^{3}$
(iii)The roots if they form an A.S.
(b) Using mathematical induction, prove that:

$$
\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots+\frac{1}{(n+1)(n+2)}=\frac{n}{2(n+2)}
$$

(c)Find the sum to n terms of the series: $\frac{1}{1 \mathrm{x} 2}+\frac{1}{2 \mathrm{x} 3}+\frac{1}{3 \mathrm{x} 4}+\cdots+\frac{1}{\mathrm{n}(\mathrm{n}+1)}$

Question 2

(a) Find the eigenvalues and the eigenvectors of the matrix: $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 1 & 3\end{array}\right]$
(b) Solve the equation $x^{3}-8 x^{2}+21 x-20$, if $2-i$ is one of the root.
(c) Solve the following linear system by inverse method:

$$
y+2 z+2 x-8=0, \quad x+z-y=1, \quad x+2 z+y=7
$$

Question 3

(a)State the definition of parabola.
(b) Determine the center and radius of the circle $x^{2}+y^{2}+4 x-6 y+3=0$.

Also, write its tangent at the point $(1,2)$.
(c) Find center, vertices and sketch the hyperbola $4 x^{2}-y^{2}+24 x+4 y+36=0$.

Question 4

(a)Find center, vertices and sketch the ellipse $x^{2}+4 y^{2}+4 x+8 y+4=0$.
(b)Write the equation of plane that passes through $(1,2,3),(2,0,1),(4,1,-1)$.
(c)Find the angle between the line $\frac{x-2}{2}=\frac{y-1}{1}=\frac{z}{-1}$ and the plane $x-2 y+z+1=0$

Also, find the point of intersection.

Basic Science Department
Mathematics II Code: Math 102
Final Exam: May 2014
Time Allowed: 2 Hours
Answer All questions

Modern University
For Technology \& Information

Academic year: 2013 / 2014
Semester: Spring
Examiners: Dr. Mona Samir Dr. Mohamed Eid

Faculty of Engineering No. of Questions: 4 Total Mark: 40

ممنوع إستخدام المحمول كألة حاسبةً. يُسمح فقط بإستخدام الألة الحاسبة العادية
Do not use Mobile as Calculator. Only use regular Calculator

Question 1

(a) Prove using mathematical induction that for all $n \geq 1$,

$$
1+4+7+\cdots+(3 n-2)=\frac{1}{2} n(3 n-1)
$$

(b) Find the sum of \mathbf{n} terms of the series: $\sum_{r=1}^{n} \frac{1}{r(r+1)}$
(c) Using Horner's method, divide $\left(x^{4}-6 x^{3}+28 x-30\right)$ by $(x-5)$.
(d) If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are the roots of the equation: $2 x^{4}-4 x^{3}-12 x^{2}+16=0$.

Then find : (i) $\sum_{i=1}^{4}\left(\alpha_{i}\right)^{2} \quad$ (ii) the roots if they form geometric series.

Question 2

(a) Evaluate $(-4-8 i)^{2 / 3}$
(b)Find the eigenvalues and the eigenvectors of the matrix $\mathrm{A}=\left[\begin{array}{ccc}-5 & 0 & 0 \\ 3 & 7 & 0 \\ 4 & -2 & 3\end{array}\right]$.
(c)Solve the following linear system using inverse matrix:

$$
-y-z+2 x=4, \quad 4 y-2 z-11=-3 x, \quad 4 z-2 y+3 x=11
$$

Question 3

(a)State the definition of the parabola.
(b) Show that the circles $x^{2}+y^{2}+4 x+2 y-3=0, x^{2}+y^{2}-6 x+6 y-3=0$
(c)Write the equation of circle where the points $(2,1),(0,-3)$ are ends of diameter.

Also, find the equation of tangent at the point $(2,1)$.
(d)Find center, vertices and sketch the ellipse $4 x^{2}+y^{2}-8 x+4 y+4=0$.

Question 4

(a)Write the equation of the sphere of radius 2 and its center at the point $(1,2,-2)$.
(b)Describe the surface $2 x^{2}-y^{2}-3 z^{2}=0$.
(c)Write the equation of the plane that passes through the point $(1,-1,3)$ and parallels to the plane $2 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=3$.
(d)Determine the value of c such that the following equation represents pair of
lines: $2 x^{2}+3 x y+y^{2}-x+c=0$.

Good luck

